

Technische Universität München

Project B8

MENX rats: a unique platform for translational studies of neuroendocrine tumors (NETs)

Sebastian Gulde¹, Hermine Mohr¹, Rickmer Braren², Johannes Notni³, Franz Schilling⁴,

Katja Steiger³, Natalia S. Pellegata¹

1. Institute for Diabetes and Cancer, Helmholtz Zentrum München; 2. Institute for diagnostic and interventional Radiology, TUM; 3, Institute of Pathology, School of medicine, TUM; 4. Department of Nuclear Medicine, School of Medicine, TUM.

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

IDC Institute for Diabetes and Cancer

Gulde S. and Pellegata NS. (2021) *CDKN1B* (p27) defects leading to pituitary tumors, in *Gigantism and Acromegaly 1st Edition: Genetics, Diagnosis, and Treatment.* Ed: C. Stratakis. Publisher: Elsevier..

Mohr H and Pellegata NS. (2017) Animal models of MEN1. Endocr Relat Cancer 24:T161-T177. Wiedemann T and Pellegata NS. (2015) Animal models of multiple endocrine neoplasia. Mol Cell Endocr, S0303-7207:30013-7.

Lee M and Pellegata NS. (2013) Multiple endocrine neoplasia syndromes associated with mutation of p27. J Endocrinol Invest. 36:781-7.

Lee M and Pellegata NS (2013) MEN4, in *Genetic Endocrine Tumor Syndromes*, Frontiers of Hormone Research, Ed. C. Stratakis, 41:63-78.

Pellegata NS (2012) MENX. Annales d'Endocrinologie, 73:65-70.

Pellegata NS (2012) MENX and MEN4. Clinics, 67: Suppl 1:13-8.

Marinoni I and Pellegata NS. (2010) p27, a novel MEN gene? Neuroendocrinology, 93: 19-28. Molatore S and Pellegata NS The MENX syndrome and p27: relationships with multiple endocrine neoplasia, in *Progress in Brain Research: Neuroendocrinology 2010*.

MENX rats: a model of multiple NETs phenotype

824

- Multi-tumor syndrome that spontaneously developed in a rat strain
- MENX affected rats have a loss-of-function mutation in p27
- Pituitary and adrenal tumors develop in 100% of rats by 7–8 months (progression)

Clinical issues to solve for NETs

 Based on the new WHO classification from 2017, all NETs have the potential to become malignant and therefore incurable.

1st question:

824

how can we predict which tumor will become malignant?

2nd question:

which treatments can work for unresectable/aggressive tumors?

>>> New therapeutic targets/therapies

In vitro drug testing

MENX rats tumor spectrum

SFB 824

Hermine Mohr Sebastian Gulde

Imaging and treatment of pheochromocytoma (PCCs)

Katja Steiger, Simone Ballke

MENX rats: the only spontaneous, endogenous model of pseudohypoxic PCC (>aggressive subtype)

824

Targeting PI3K and CDK4/6 as effective therapeutic option for PCCs

SFB 824

Manuscript in preparation

Imaging MENX pheochromocytoma (PCC)

Immunostaining possible

Disadvantages:

824

- Only one timepoint
- · Compatibility with contrast agents and
- fluorophores Detection of difficult tissue as fat & blood

Disadvantages:

- Limited tissue penetration
- No tissue penetrating limit

Disadvantages:

- Relatively low sensitivity
- High cost
- · Long imaging time

- No tissue penetrating limit
- Quantitative
- Whole-body scanning

Disadvantages:

- ٠ Radiation risk
- High cost

Disadvantages: Radiation risk

images

Quantitative

· Whole-body scanning

anatomical and functional

High cost

Mohr H, Steiger K, Ballke S, Schilling F, Pellegata NS. Imaging pheochromocytoma in small animals - preclinical models to improve diagnosis and treatment. EJNMMI Res. Submitted

Molatore S et al. Proc Natl Acad Sci USA, 2010; 107:18493-8. Lee M et al. Mol Cancer Ther, 2011; 10:1450-9. Miederer M et al. Int J Mol Imaging, 2011;175352. Lee M et al. Mol Endocrinol, 2012;26:1394-405. Gaertner FC et al. J Nucl Med 2013; 54:2111-7 Leinhäuser I et al. OncoTarget 2015; 6:39111-26. Wiedemann T et al. Endocrinology 2016; 157:3157-66. Lee M et al. Endocr Relat Cancer 2017; 24:1-15. Molatore et al. Endocr Relat Cancer 2018; 25:145-162 Mohr et al. Cancers 2021; 13:126

A novel MIBG analog (LMI1195) allows the detection of PCC in MENX rats

824

[¹⁸F]LMI1195 PET/CT

MENX mutant

MENX mutant + desipramine 10 mg/kg

Gaertner FC, et al. (2013) Preclinical evaluation of [18F]LMI1195 for in vivo imaging of pheochromocytoma in the MENX tumor model. J Nucl Med 54:2111-7

NOVEL PETTRACER FOR PCCs

TRANSLATION

MENX rats phenotype

Clinical issues to solve

824

Nonfunctioning pituitary tumors

- Often invasive \rightarrow they cannot be removed by surgery \rightarrow recur
- Don't respond to standard therapies with somatostatin analogs

New therapeutic targets/therapies

Marinoni I et al. Neuropath App Neurobiol 2013; 39:256-69. Lee M et al. Acta Neuropathol 2013; 126:137-50 Lee M et al. Endocr Relat Cancer 2014; 22:111-9. Lee M et al. Clin Cancer Res 2015; 21:3204-3215. Bogner et al. Int J Cancer 2020; 147:3523-3538. Gulde S et al. Cancers 2021 epub 22.06.2021

Sebastian Tobias Gulde Wiedemann

Head-to-head comparison of octreotide LAR (sandostatin) and pasireotide LAR (signifor) for efficacy against pituitary tumors (PTs)

Mathias Schillmaier, Franz Schilling, Johannes Notni, Katja Steiger

Clinical issues to solve

824

Nonfunctioning pituitary tumors

- Often invasive \rightarrow they cannot be removed by surgery \rightarrow recur
- Don't respond to standard therapies with somatostatin analogs (SSTR2-directed)

New therapeutic targets/therapies

Human NFPTs

Somatostatin analogs and their affinities for somatostatin receptors (SSTRs)

SFB 824

Is pasireotide more effective than octreotide in our model of NFPTs?

Group 1: Mut/mut placebo-treated (control) Group 2: Mut/mut + sandostatin® (octreotide) [1X/2x 28d] Group 3: Mut/mut + signifor® (pasireotide) [1X/2x 28d]

SFB 824

Inhibition of tumor growth: pasireotide > octreotide; females > males

Inhibition of tumor growth: pasireotide > octreotide

Gender effect

SFB 824

SFB 824

Inhibition of tumor growth *in vivo* correlates with Ki67 labelling index *ex vivo* (for pasireotide < than for octreotide)

Ki67 immunohistochemistry

Expression of Sstr genes in PTs @ baseline and after treatment

Females have higher Sstr3 expression at baseline

Following treatment

824

Is the expression of Sstr 1,2,3 receptors modulated by the drugs?

Octreotide reduces Sstr2 protein expression; pasireotide increases Sstr3 expression in males

824

Intermediate

High 📕

Female PAS

Female Control

Apoptosis as the cause of shrinkage upon pasireotide treatment?

In females there is induction of apoptosis upon pasireotide treatment

824

Expression of SSTR3 in human NFPT patients (n=108)

824

In female patients there is a trend for higher SSTR3 expression (patient stratification?)

Gulde S et al. Cancers 2021 epub 22.06.2021

Ninelia Minaskan Tobias Wiedemann

A novel druggable pathway active in pituitary tumors (PTs)

Mathias Schillmaier, Franz Schilling, George Kaissis, Rickmer Braren

Transcriptome analysis of pituitary tumors (PTs)

SFB 824 – Symposium 2021, June 24/25th ; TranslaTUM Munich

Angiopoietins and Tie-2 receptor

824

promote survival and proliferation of ECs

Autocrine signaling

Signature of rat pituitary tumors (PTs)

824

 Among the genes dysregulated in rat PTs are angiogenic genes: Angiopoietin (Ang)-2 (+2,4 fold) and Ang-1 (-3,4 fold) versus normal pituitary

	Age	Ang-2	Angptl2	Vegf
wild-type n=3 (the average is used)	7-8 mo	0,81	0,58	0,75
12/1189 mutant	8.5 mo	5,18	2,40	3,25
12/1791 mutant	8.5 mo	1,89	0,70	1,46
12/1792 mutant	8.5 mo	1,64	0,47	1,63
12/3037 mutant	7 mo	1,00	0,46	0,85
11/447 mutant	9 mo	2,47	1,14	2,10
11/370 mutant	9.5 mo	1,56	2,25	1,78
11/1633 mutant	8 mo	2,14	0,44	1,75

Situation in PT cells:

824

- High expression of Ang-2 (which is secreted)
- Expression of Tie-2

autocrine stimulatory loop as in ECs?

SFB 824

 Ang/Tie-2 signaling in PT cells supports cell viability in vitro and in vivo and represents a therapeutic target for recurrent/aggressive PTs

824

A new pathway active in PT cells that mediates the cross-talk between tumor and endothelial cells \rightarrow target for therapy

(In revision @ EMBO Mol Med)

Acknowledgements

SFB 824

Prof. R. Braren Dr. G. Kaissis Dr. I. Heid Prof. W. Weichert Prof. J. Notni Dr. K. Steiger Dr. S. Ballke

Prof. F. Schilling Dr. M. Schillmaier

SFB

Dr. Tobias Wiedemann Dr. Ninelia Minaskan

Dr. Hermine Mohr Dr. Isabel Valença Sebastian Gulde Alessia Foscarini Bhargavi Karna Elke Pulz

